분야별 논문보기
APP별 논문보기
- 2d_comp_p
- 2d_continuum_analysis
- 2d_incomp_p
- 2d_yuibm_1
- 3d_electrophysiology_humanhf
- brownian_dynamics
- caffeineedison
- cnt_fet
- cr2d_dyn
- cr2d_st
- csd_elast
- csd_eplast
- dock
- dpd_linear_polymer
- edava
- edisondesigner
- edwave2d
- eklgcmc2
- emega
- galaxytbm
- galaxydock
- galaxyrefine
- galaxytbm
- gamess
- ksec2d_ae
- ksec2d_wm
- lcaodftlab
- m-sketch
- nanowire_fet
- plate_shell_analysis
- pnjunclab
- sfe_calc
- sfe_calc_v2
- solarcell
- solv_freee
- tb_em_negf
- tb_em_negf_tmd
- tb_em_nw
- utb_fet
Co-rotational Plane beam-Transient analysis를 이용한 에어포일 단면형상 변화에 따른 진동특성 연구
Co-rotational Plane beam-Transient analysis를 이용한 에어포일 단면형상 변화에 따른 진동특성 연구 (버전 1.1)


경진대회: 구조동역학 구조동역학 » 5회 경진대회
미리 보기 생성에는 몇 분 정도 소요됩니다.
버전 1.1
In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Assuming aircraft wing as a cantilevered beam with a constant cross-sectional shape, natural frequencies of each airfoil shape was compared while varying airfoil maximum thickness and maximum camber length, using Fast Fourier Transformation(FFT). When the airfoil maximum thickness was varied, natural frequency showed peak value at 18% chord, and decreased afterwards. When the airfoil maximum camber length was varied, natural frequency either increased or decreased at 6% chord, while at 8% the natural frequency showed its maximum. Applying such trends to B-737 wing airfoil, an improved B-737_mod airfoil shape was obtained with regard to the vibration characteristics.
