갱신이론과 전산모사를 통한 비고전적 단일 효소 반응시간 분포와 고분자 특이 수송 현상의 정량적 이해

갱신이론과 전산모사를 통한 비고전적 단일 효소 반응시간 분포와 고분자 특이 수송 현상의 정량적 이해

썸네일 Challenge 애게서 업로드 하였습니다. 17. 8. 9 오전 11:20
평균 (0 투표)
효소는 생명 현상을 구현하는 단백질 촉매인데 그 동안 효소의 촉매 반응 속도는 Michaelis-Menten(MM) 모델로 대부분 설명되어 왔다. 그러나 MM 모델은 실험으로 측정된 단일 효소 반응시간의 확률분포 모양을 설명할 수 없다. MM 모델에 반응계수의 정적 무질서 개념을 도입한 효소 반응 모델도 기질 농도에 따라 변화하는 효소 반응시간의 통계적 요동을 설명하지 못한다. 우리는 단일 효소 반응시간의 통계적 요동이 기질에 따라 변화하는 양상을 설명하기 위해 효소 반응을 구성하는 개별 화학반응을 단순히 푸아송 과정이 아닌 갱신과정(renewal process)으로 확장한 효소 반응 모델을 제안한다. 우리는 이 단일 효소 반응 모델과 기질에 따른 효소 반응시간 분산 변화 데이터를 비교하여 효소-기질 복합체의 지속시간 분포를 간단한 형태로 얻어내었다. 또한, 이 정보를 토대로 전산모사를 수행하여 효소 반응시간의 확률분포를 얻어내고, 실제 실험 결과 및 기존 이론들과 비교하였다. 뿐만 아니라 단일 효소 반응시간의 확률분포를 연속 시간 임의의 보행자(continuous time random walker)의 대기시간 확률분포(waiting time distribution)로 대응하면, 평균 제곱 변위가 시간에 따라 단순히 증가 하지 않는 고분자의 특이 수송(anomalous diffusion) 현상도 정량적으로 설명할 수 있었다.
경진대회: 계산화학 계산화학 » 4회 경진대회
태그: melts
1 Of 8
코멘트
아직 코멘트가 없습니다. Please sign in to comment.

버전 1.2

EDISON Test가 마지막으로 수정함
17. 8. 29 오전 10:22
상태: 승인됨
효소는 생명 현상을 구현하는 단백질 촉매인데 그 동안 효소의 촉매 반응 속도는 Michaelis-Menten(MM) 모델로 대부분 설명되어 왔다. 그러나 MM 모델은 실험으로 측정된 단일 효소 반응시간의 확률분포 모양을 설명할 수 없다. MM 모델에 반응계수의 정적 무질서 개념을 도입한 효소 반응 모델도 기질 농도에 따라 변화하는 효소 반응시간의 통계적 요동을 설명하지 못한다. 우리는 단일 효소 반응시간의 통계적 요동이 기질에 따라 변화하는 양상을 설명하기 위해 효소 반응을 구성하는 개별 화학반응을 단순히 푸아송 과정이 아닌 갱신과정(renewal process)으로 확장한 효소 반응 모델을 제안한다. 우리는 이 단일 효소 반응 모델과 기질에 따른 효소 반응시간 분산 변화 데이터를 비교하여 효소-기질 복합체의 지속시간 분포를 간단한 형태로 얻어내었다. 또한, 이 정보를 토대로 전산모사를 수행하여 효소 반응시간의 확률분포를 얻어내고, 실제 실험 결과 및 기존 이론들과 비교하였다. 뿐만 아니라 단일 효소 반응시간의 확률분포를 연속 시간 임의의 보행자(continuous time random walker)의 대기시간 확률분포(waiting time distribution)로 대응하면, 평균 제곱 변위가 시간에 따라 단순히 증가 하지 않는 고분자의 특이 수송(anomalous diffusion) 현상도 정량적으로 설명할 수 있었다.
다운로드 (1.4MB) URL 또는 Webdav URL 가져오기
버전 히스토리
버전 날짜 크기  
1.2 5 년 전 1.4MB
1.1 5 년 전 984k
1.0 5 년 전 1.4MB